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ERROR ESTIMATES FOR 3-d NARROW FINITE ELEMENTS 

RICARDO G. DURAN 

ABSTRACT. We obtain error estimates for finite element approximations of the 
lowest degree valid uniformly for a class of three-dimensional narrow elements. 
First, for the Lagrange interpolation we prove optimal error estimates, both 
in order and regularity, in LP for p > 2. For p = 2 it is known that this result 
is not true. Applying extrapolation results we obtain an optimal order error 
estimate for functions sligthly more regular than H2. These results are valid 
both for tetrahedral and rectangular elements. Second, for the case of rectan- 
gular elements, we obtain optimal, in order and regularity, error estimates for 
an average interpolation valid for functions in Wl+,P with 1 < p < oo and 
0 < s <1. 

1. INTRODUCTION 

The object of this paper is to analyze the convergence of finite element methods 
in 3-d when narrow elements are used. 

The general standard error analysis (see for example [4]) is based on the so-called 
"regularity assumption" on the meshes; i.e., the optimal order convergence of finite 
element approximations, with respect to the meshsize h, is obtained provided that 
the ratio between the outer and inner diameter of the elements remains bounded 
when h -* 0. However, in 2-d problems it is known that this condition is not really 
necessary. Indeed, it can be eliminated in the case of rectangular elements; i.e., the 
optimal order convergence holds independently of the ratio between edges (see [20] 
and also [24] where similar results are obtained for the case of isoparametric quadri- 
laterals), and can be replaced by a "maximum angle condition" (angles bounded 
away from wr) for triangular elements (see [1], [2], [10], [13], [15]). 

Consequently, one does not need to avoid very narrow elements which are natural 
in problems where the solution behaves differently in different directions. 

Therefore, a natural question is whether or not these kinds of results can be 
extended to 3-d problems. It turns out that the situation is quite different in 
this case. For the case of tetrahedra, Krizek [16] showed that for the Lagrange 
interpolation ul of a function u, the optimal order convergence is preserved if the 
angles of the faces and the angles between faces are bounded away from ir, provided 
u is regular enough. More precisely, he proved that under those assumptions, 

(1.1) |Uu - U| II T < ChIU12,oo,T, 

where T is a tetrahedron, C here and throughout the paper is a generic constant and 
we have used the standard notation for Sobolev norms and seminorms, 11 Ils,p,T and 
I |s,p,T. This angle condition seems to be a natural extension of the 2-d condition. 
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However, in many cases u , WI272,, but u c W2'p for some p < oo . For example, 
this is the case when u is the solution of an elliptic problem in a nonsmooth domain 
such as a polyhedron (see [11]). Therefore, one can ask whether an estimate like 
(1.1) holds with oo replaced by p, with 3/2 < p < oo; i.e, p such that the Lagrange 
interpolation is defined for u G W2,p, precisely, 

(1.2) lit' - U llp,T < Ch u2,p,T. 

Of particular interest in finite elemients is the case p = 2. For this case Al Shenk 
[221 obtained general results which can be applied to many type of degenerate 
elements in any dimension. His results give optimal order estimates for higher 
order elements for a wide class of elements. For example, for tetrahedra or 3-d 
rectangles T and elements of degree k > 2 he proved that, 

(1.3) ||u - 1 ,11,2,T < Ch lUlk+1,2,T 

with C a uniform constant for a class of narrow elements. Moreover, Al Shenk gave 
interesting counterexamples showing that (1.3) does not hold for k =1 neither 
for rectangles nor for tetrahedra. In those examples the constant C blows up when 
a reference element is compressed in one direction. In particular this shows that 
(1.3) does not hold for k = 1 under the Krizek hypothesis. 

Then, two natural questions follow: 

i) For which values of p , 2 < p < oc , does (1.2) ho]( 

and, 

ii) Which is the regularity required in order to have the optimal order estimate 
for p = 2 uniformly valid on narrow elements? 

We will show in Section 2 that (1.2) holds for every p such that 2 < p < oo with 
a constant C = CO depending on p and, of course, blowing up when p -> 2. In 
order to answer the second question we give an explicit estimate of the dependence 
on p for C, which allows us to use known extrapolation results to show that the 
optimal order is valid for p = 2 for functions u which are sligthly more regular than 
H2; more precisely, for functions u G IVV2(LOgL)1+? (see the definition in Section 2). 
In other words, we could say that the counterexamples showing that the optimal 
order in H1 does not hold are very "pathological" cases which will not usually arise 
in practice and therefore the use of narrow elements (in the class of Al Shenk) will 
not affect the order of convergence in the energy norm. 

On the other hand, one could think that the finite element solution of a given 
problem behaves better than the Lagrange interpolation and that the optimal order 
is preserved for the finite element approximation even though it does not hold for 
the interpolation. In view of the results described above this would be of interest 
for problems where the solution is singular; for example, when the domain is not 
convex it is usually the case that u G Hl+s for some 0 < s < 1, but it is not in H2. 

In fact, for many problems it is known that, 

(1.4) |U|-Uh |1,2 < C inf I|u-VI, 1,2 

(we do not specify the domain when we are talking of global norms or seminorms), 
where VIh is the finite element space associated with the partition El, and C depends 
only on the problem considered. Therefore, to get optimal order convergence it is 
enough to prove it for some approximation in Vh. 
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In Section 3 we will consider the particular case of 3-d rectangular elements R 
and analyze the convergence of an approximation Hlu, where II is an operator of 
Clement's type, i.e., an average interpolant (see [5], [21]). This kind of interpolant 
has been introduced and widely used for nonregular functions for which the La- 
grange interpolation is not even defined. Our result shows that they can also have 
better properties than the Lagrange interpolation for more regular functions. 

For meshes of 3-d rectangles we will prove that for 1 < p < oc, 0 < s < 1 and 
U C W7+s,P 

(1.5) lu - lull 1,p < Chs juji+s,p 

provided that the size of the elements is quasi-uniform in each direction. In other 
words, the constant C depends on the relation between the element sizes in the 
xi-direction, i = 1, 2, 3, but is independent of the relation between the sizes of the 
edges in different directions. In particular, in view of (1.4), the optimal order of 
convergence in H1 is preserved under these assumptions whenu E H2. Moreover, 
for s = 0, the quasi-uniformity in each direction can be relaxed by replacing it 
by a local condition: comparable size in each direction but only between neighbor 
elements. As we will show, estimates for the case s = 0 are enough to obtain almost 
optimal error estimates for finite element approximations of functions in fractional 
order Sobolev spaces. 

2. ERROR ESTIMATES FOR THE LAGRANGE INTERPOLATION 

In this section we obtain error estimates for the Lagrange interpolation which 
are uniformly valid for a class of narrow elements. We consider only the case of 
tetrahedra but analogous results can be proved for rectangular elements in the same 
way. 

First we show that an optimal estimate holds in W1"P for 2 < p < oo. Since the 
result is not true for p = 2 (see [22]) the constant in this error estimate blows up 
when p -* 2. We give an explicit estimate of this constant which allows us to apply 
extrapolation theory (see for example [18]) to obtain an estimate for p = 2, which 
shows that the optimal order is recovered if the interpolated function is sligthly 
more regular than H2. 

As in [22] we consider elements T obtained from a reference element K by a 
compression in each direction followed by an affine transformation given by a matrix 
A such that, if AA and AA are its maximum and minimum singular values then, 

(2.1) AA < 
AA 

- 

for a given positive constant -y. We look for error estimates with constants de- 
pending only on -y and the reference element (in particular, not depending on the 
relation among the compression factors in each direction). 

We derive the error estimates for T being a compression in each direction of 
the standard reference tetrahedron K with vertices at (0, 0, 0), I = (1, 0, 0), 2 = 

(0,1, 0), and (3 = (0, 0,1). More precisely, T has vertices at (0, 0, 0) and hi(i, 
i = 1, 2,3 with hi < h. The constants appearing in the error estimate on T will 
depend on the reference element and, of course, on hi for i = 1,2,3 but not on the 
relations between them. We refer to [22] for the details in the case of a general 
element obtained from T by an affine transformation satisfying (2.1). 
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Given a function u defined on T, for G E K and (i = xi/hi let 

U(W) = u(x) 

and let u1 be the linear interpolant of u. Then, 

UI ) = u' (x). 

The error estimate will be a consequence of Lemma 2.1 below. The proof of this 
lemma is a simple modification of the argument used by Al Shenk [22] and also 
by Krizek [15] in the two dimensional case. The main idea in [22] and [15] is to 
introduce a known linear approximation of u and to estimate the difference between 
it and u1. For example, let B C K be a ball and P1(, 7) be the first degree Taylor 
polynomial of Tu at ( E B, i.e., 

PI ((, ) = UW( + Vu(() (q - O) 

and define, 

UB(= IBI lP 
Clearly UB G '1 and it is known that 

(2.2) || -(u (- UB)110,p,K '-f C| I |1,P,K; 

indeed, this is the Poincare inequality applied to the function <'. See [7], [8], 
[9], [12] for different arguments to obtain these types of inequalities and explicit 
estimates for the constant C. In particular, C can be taken independent of p (this 
follows, for example from the proof given in [8]). 

Lemma 2.1. For 2 < p < oc there exists a positive constant Cp such that for 
U EWv(K) 

|| - u') I I O,p,K < Cp I |1,p,K- 

Proof. In view of (2.2) it is enough to estimate 

||x (U -UB) 10,p,K- 

Given v G P1 (K), av is a constant and therefore, 

( 2.3 ) Ov lav I O Pa = i 
11 1, p,K 6 O-1 6M 

Now, take v -u i-UB and call Ei the edge of K with vertices at 0 and (i. We 
have, 

Q(Ui UB)((i) - (U' -UB)(0) (u - UB)( i) - UB)(0) 

(2.4) =U - /; uUB) (ti) dt|< | (u -UB) II O,p, E, 

The integral of < (u -UB) on the edge is well defined because this function is in 
W1 P and it is known that in R3, for p > 2 the functions in W1"P can be restricted 
to a line and there exists a constant Ap such that 
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Consequently, from (2.3), (2.4) and (2.5) we obtain 

114 (U - 
UB)1O,p,K 0< Ap(IiI (-U-B) |O,p,K + I 1,p,K), 

which combined with (2.2) yields the lemma. D 

Now we can state the error estimate on the element T. 

Theorem 2.1. For 2 < p < oc, there exists a constant Cp depending on p and the 
reference element K such that for u E W2,p, 

(U - U') II O,p,T < Cp (Ehj aIaXl OpT)) 

Proof. Changing variables and applying Lemma 2.1 we have 

11 - (U -U- IP|O,p,T = hPJI0 (U U ) lPh, h2hAd 

< 79 JK E aIi lPhih2h3c 

i a2(hjuhi)P I lPdx 

and the theorem is proved. D 

The inequality (2.5) is a particular case of the general classical results about 
restrictions of functions in Sobolev spaces to lower dimensional surfaces (see for 
example [17]). In order to obtain a result for p = 2 applying extrapolation theory, we 
need an estimate for the constant Ap appearing there. Therefore, for this particular 
case, we will give a short proof which provides an estimate of the constant in terms 
of p. By the standard extension theorem we can work with functions in W1'P(R 3) 
having compact support contained in a fixed ball B(O, M), with center at the origin 
and radius M containing the reference element. 

Lemma 2.2. Let y = (Y1,Y2) c R2, t c R and f(y,t) be such that suppf C 
B(O, M) and f c W1',P(R3) with 2 < p < 3. There exists a constant C depending 
on M but independent of p such that, 

If (O, O,t) lPdt < X V1yf (y t) lPdydt. 
1 ~~~~(p- 2)2 23 

Proof. For almost every t c R we have (see for example [23, p. 125]) 
if y 

f(O,O,t) =-- 2 -2 *V7yf(y,t)dy; 

therefore, since supp f C B(O, M) we obtain, 

Af (O, 0, t) l 1L< 2 Vyf (y, t) Idy + Jlvy f (y, t) Idy 

(2.6) 2 (I + II), 

where e > 0 will be chosen later. 
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To estimate the first term we apply Holder's inequality. Then 

Y < ( e llqdY) (I v, 
f (y t) lPdy) 

where q is the conjugate exponent of p. 
Since q < 2, 

q 2 2(2w)q 1 2r)(p-1)q 'q 

(1?E ylqdy) (2- 2F)(p - 

therefore we have 

(p -2)l (JYI<e) 

On the other hand, 

II < - Vyf (y, t) Idy <- q(rM2) (I Vy f (y, t) lPdy . 
E e<IYI<M E e<IYI<M 

Therefore, there is a constant C depending on M but not on p such that 

f(O,Ot)~~C ( P 1 Vy f(y, t) ldy. I f (?, O,lt) |p < 
q 

( )z+EP ) 2 
|v 8 )|d 

(p -2)~ 
P 

Taking E (p - 2) 2 we have 

e q P 1 

(p-22) (p-2)2 
and therefore, integrating in t we conclude the proof. 

From the proof of Lemma 2.1 we know that Cp = CAp, in particular we obtain the 

following result. 

Corollary 2.1. For 2 < p < 3 there exists a constant C depending on the reference 

element K but independent of p such that for u W2,pc 

(2.7) |V(U - u') O,p,T < (p )3 hlul2,p,T 

As a consequence of Corollary 2.1 we can obtain an optimal order estimate for 

p = 2 whenever the function u is sligthly more regular than H2. This estimate is 

obtained applying a result of Milman [19] on extrapolation. In order to state this 

result and to be precise in what we mean with "sligthly more regular than H2" we 

recall the definition of the space L2(LogL(T))l+6 on the element T, 

L2(LogL(T))l+6 = {u G L j2 u2(log(e + IuI))l+6 < ??} 

as it is known, this is a Banach space with the norm, 

I|UIIL2(LogL(T))1+E 
= inf{A > 0 : (u/A)2(log(e + Jul/A))'+- < 1}. 
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We will also use the associated Sobolev space W22(LOgL(T))1?E defined as 

WL2(LOL(T))+? {u c L2(LogL(T))l+6 D?u cL2(LogL(T))l+6, 
Vo s.t. lal < 21, 

which is also a Banach space with the norm, 

wL2 (LogL(T)) 1+E D'u L2(LogL(T))1+- 

Now we can state the result of Milman [19] which follows from the general theory 
of extrapolation given in [14] (see also [18]). This result together with Corollary 
2.1 implies the desired error estimate, 

Lemma 2.3. Let po > 2 and L: W2,P(T) -* LP(T) be a linear operator satisfying 

IlLu||o,p,T < ( 2)C I IUI2,p,T 

for every p c (2, PO). Then, for any E > 0 there exists a constant C2 depending only 
on C, and E such that, 

jLuII0,2,T< 
? 

211UIIW2 
L2 (LogL(T)) 1 + 

Consequently we have the following, 

Theorem 2.2. For any E > 0 there exists a constant C depending only on the 
reference element and E such that for u c W22(LogL(T))1?E7 

|V(u - u')110,2,T < Chjju W22(LL(T))1+E 

Proof. The result is an immediate consequence of Corollary 2.1 and Lemma 2.3. D 

3. ERROR ESTIMATES FOR AN AVERAGE INTERPOLANT 

In view of the results in Section 2 a natural question is whether or not optimal 
order estimates are valid uniformly for narrow elements for other interpolations and 
more singular functions. In this section we give a positive answer to this question 
for the particular case of rectangular elements. 

Assume that Th is a partition of 3-d rectangles with side lengths not greater than 
h and let Vh be the space of continuous piecewise trilinear functions associated with 
Th - 

Given an element R c Th, denote with hR,i the lengths of the edges of R in the 
xi directions. Let h. = minRcThhR,?, hi = maxRGThhR,i and, h = maxi=1,2,3hi. 

We assume that the family of meshes is quasi-uniform in each direction, i.e., 
there exists a constant u- > 0 such that, 

(3.1) hi/hi < 

Our error estimates will depend on o- but will be independent of the relations 
between edge sizes on different directions, i.e., they will be valid for narrow ele- 
ments. The quasi-uniformity in each direction can be relaxed, replacing it by a 
local condition, if we restrict our estimates to functions in W1,P which, in view of 
the error estimates for Lagrange interpolation for smooth functions, is enough to 
obtain almost optimal error estimates for finite element solutions. We will come 
back to this point later on. 
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In order to define the interpolation operator we make a change of variables and 
transform the mesh into a quasi-uniform. reference mesh by a linear transformation. 
This can be done in view of (3.1). Let 

(XI, x2,X3 x- (Xlhl, X21h2, X:3lh3). 

In this way an element R is transformed into K which have sizes hK, suich that 

(3.2) 1 < hK,i = hR,i/h, ?< 0- 

ancd so the mesh T, = {IK = /(R): R C 7l} is quasi-uniform. 
Given a function u defined on Q we define TU on O(Q) by 

- Qu)(to -5l)%(), (C c(Q), 

and for ( =(x) 

(3.3) l()=l )- 

where II is defined in the following way. 
For a node v (vI,v2,v3) of Th let B,, be a, ball with center v ancd radiuis r 

(fixed from now on and independent of v and h) such that BP, is contained in the 
union of elements sharing v (clearly we can take any r < 1). If v is a, boundary node 
we extend the mesh and the functions u and -u by standard extension theorems in 
Sobolev spaces (we do not consider approximations of boundary conditions). 

Let PI (t, i)) be as in Section 2 and b a, C function (also fixed from now on) 
such that 

sUpp fb C B(O,r) and, Jbdx = 1, 

where B(O, r) is the ball with center at the origin and radius r. 
We define 

uB,j?) I=,/ PI (t, (v - < 

and KII as the unique trilinear function such that 

(3.4) Ilu(v) = TIBl, (v,) 

for every vertex v of K. 
Note that, in principle, one could define this interpolation using the definition 

of UB, introduced in Section 2. However, we use a regularized average for technical 
reasons which will become clea,r below. This interpolation is similar to the one 
defined by Clement in [5]. We replace the L2 projection used in [5] by a regularized 
average of the Taylor polynomial. This average has been used also in [71, [81 to 
give a constructive proof of the Branible-Hilbert lemma. Another difference is that 
we define the interpolation in a, reference patclh instead of doing it directly in the 
patch containing the element considered. Let us also remark that the interpolation 
TI can be seen as a particular case of the genera,l interpolation technique given by 
Scott and Zhang in [21] where they generalize Clement's approach. 

For an element R C 7j, we denote by R the patch formed by R and its neighbor 
elements andc K= +(R). 

Our main result is a consequence of the following lemma. 
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Lemma 3.1. If (3.1) holds, then for 1 < p < oc there exist positive constants C3 

and C4, depending only on r, Vb and cr such that for u C W2cp(k), 

(3.5) |IU-TILt10,p,K < C31Ulk,p,k for k = 0,1, 2, 

and 

(3.6) 1 ( -ad l I) 0 p, K 
au 

04 1 pK for k = 0, 1. 

We postpone the proof of this lemma and show how the error estimates can be 
derived by changing variables. 

Theorem 3.1. If (3.1) holds, then for 1 < p < oo and u C W2,p(c), 

(3.7) IU 
- pUII0,p,R < C3h uk for k = 0,1, 2, 

(3.8) (Ua a-IU)IIO_p,R < C410 P,R) ax. Cu-fl)O,, 0 OpR 
and 

(3 9) aaa (U - IIU) 110,p,R 
< 04 ( h a$ji OP,R ) 

In particular, 

1a x (U - HU)fO,p,R < C4h a 1,P,R' 

where the constants C3 and C4 are the same as in Lemma 3.1 and so they depend 
only on r, Vb and cr (in particular they are independent of the ratio between edges 
in different directions). 

Proof. We prove only (3.9) since (3.7) and (3.8) can be obtained analogously. 
Changing variables and applying Lemma 3.1 we have 

aAX (u - flu) IlO,p,R = jP a'I0,(U HU- " Ph1h2h3dP 

-,, hi JK E -h2h3Pl23d 3 0UI 
< a23'u 0Pf f-. a au Pd 

I:'- aIa h2h 
C3jP a x ax - 

and the theorem is proved. E 

An immediate consequence of the theorem is the following 

Corollary 3.1. If (3.1) holds then, for 1 < p < oc and 0 < s < 1 there exists a 

constant C5 depending on C3 and C4 such that for u C Wl+s'P(R), 

(3.10) IIU - lu k,p,R < C5h1 +kIIUII p for k = 0, 1. 

Proof. It follows immediately from Theorem 3.1 and interpolation theory. El 

Now we prove Lemma 3.1 which is the most technical part of the section. To 
simplify the notation we consider i = 1. 
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Proof of Lemma 3.1. First we show that 

(3.11) |IHUIIOO--110p,K < CIIUI11PO 

Let vj, j = 1,... , 8, be the vertices of K and Xj be the corresponding trilinear 
Lagrange basis functions. We have 

8 

Ilu ZUBVJ (113)Xj 
j=1 

and then 
8 

HIIIUIIO,P,K < CE ||UB, lO,oo,Ki 

j=1 

where C is a bound for IlXjllO,p,K and so, it depends only on cv. But, from the 
definition of UB, it follows that 

H|UBV |IOKOo,K < 
CHIuIoP,K 

with C depending on Vb and 6 = diam(K) and so on cr (see [7] for details in the case 
p = 2; the argument generalizes straightforwardly for any p), and therefore (3.11) 
holds. 

Now, since Flu = u on K for any u C 1P1(K), (3.5) follows from (3.11) and a 
standard application of the Bramble-Hilbert lemma. The constant depends on r, 
Vb and v. This follows from the direct proofs of that lemma given in [6], [7], [8], [9] 
or also by a scaling argument. 

In order to prove (3.6) we proceed as follows. Let us now call vj and vj + el, 
j = 1,2,3,4, the vertices of K where e1 = (hK,1,0,0) with hK,I being the length 
of the edges of K in the x1 direction. It is known that 

a __a 

(3.12) (u p,K ?05 lki ukp,K for k = 0, 1, 

where C5 depends only on 6, r and Vb. Indeed, for k = 0 this is easily verified using 
the Young inequality for convolutions, while for k = 1 this is a particular case of 
the estimates obtained by Dupont and Scott in [7], [8] (see also [3]); in fact, it is 
essentially the Poincare inequality (2.2), the only difference being the fact that we 
are subtracting a regularized average instead of the average. 

Therefore, it is enough to estimate 

11 d (B,1 - U) 11O,P,K 

and in order to do so we use the following relation which is easy to verify (and 
is a particular case of a general one stated by Al Shenk in [22]). For a function 
v C Q1(K) (the space of trilinear functions on K), 

7 =V (Ilyf + eI) - v(uj))3 

where Xj are now the basis functions corresponding to the node v. + e1. Therefore, 
4 

1 aL K ?C E I3v(u + el) - V(T) P 
j=1 
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where C depends only on cr. In fact, it depends on the norms II a'-' 
IIO,P,K, which in 

view of (3.2) are bounded in terms of cr. 
Consequently, taking v = U 1- Hu- the lemma will be proved if we show that 

for k = 0, 1 and j = 1, 2,3,4, 

(3.13) 1 (-B,, 1 I) (V'j + eI) - (U 1 - HU) (V/) I < Cl I)Ik,,K 
with C depending only on cr, Vb and r. 

In order to simplify the notation we call 

Bo = BV1, B, = 
BV3, B2= B> +el, 711 = vj 712 =j + el. 

Now 

|(UBo -IU)(q72) - ( Bo -TIU)(71) 

IUBO(712) -UB2(72) -UBo (q71) + UB1 (q71) I 

? UBO (q72) -UB1(712) -UBo (711) + UB1(711) I + IUB2(712) UB1(712)1 

+II. 

Since ,9 (UB- UB1) is a constant we have 

j = | )( UBO - UB1)('71 + tei) hK,ldt| 

(3.14) < IKI ||II 
a 

(uBo UB1)IHO,P,K < C5OI1 
au 

Ik,P,K 

for k = 0,1 where we have used (3.12) and the fact that IKI > 1 for the last 
inequality. 

For the second term we change variables to obtain 

II - |UB2(72) - UB1 (72)1 

IJB2 PIq2 7(712 -) - J- PI (?712/)(71 -V | 

I JB[P + el,q2)-PI((,r2)]b (71- )dE. 
B1 

If we set F(t) = PI(( + tel,rj2), then 

F'(t) a VQu(( + tel)hK,l . (q2-(( + tei)) 

and therefore, 

(3.15) II =J, j a V-U(?+tel)hK,l (q2 -+(tel))V)(,l - ()dtdj. 

Now, for t [0,1] we have 

VuJQ + tel)hK,l (r - (2 + tel))>P(r,l - )<j 

< Cu86 J a VU(Q + tel) I< < Co6081 
au 

iKk 
J 1 a~ll,p, 

where C depends on Vb. This estimate together with (3.14) and (3.15) proves (3.13) 
for k= 1. 
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On the other hand, integration by parts yields 

IJ a'i Vut(Q + tel)hK,l (m2 - (( + te1))7b(rj1 - )<l 

= / X a (e + tei)hK,l div[(r2 - (( + tC1))(r1 - ()] 

< Co- I4 lO,p,K 

with C depending on 6 and Vb. Using again (3.14) and (3.15) we have proved the 
lemma. E 

4. EXTENSIONS AND FINAL REMARKS 

We have obtained error estimates for finite element approximations which are 
valid uniformly for a class of narrow elements. Clearly, the results of Section 2 can 
also be proved for the case of rectangular elements with simple modifications. 

On the other hand, the estimates (3.7) for k = 0, 1 and (3.8) hold under weaker 
assumptions. Indeed, the hypothesis (3.1) on quasi-uniformity in each direction 
can be replaced by a local condition: comparable edge size in each direction but 
only for neighbor elements. In fact, we can replace the linear transformation 0 
by a piecewise linear one which transforms the mesh Th into a uniform reference 
mesh of unit cubes. Then, we define the interpolation operator as in (3.3) but 
using this new transformation, and it is easy to see that, under this local condition, 
the arguments of the proof can be repeated to obtain those estimates for functions 
u C W1'P. For (3.7) with k = 2 and (3.9) this cannot be done because this new 
transformation does not preserve W2'P regularity. However, the estimates for W1"P 
functions are the most important because for u more regular we can use the La- 
grange interpolation to obtain error estimates for the finite element approximation 
on meshes with narrow elements. In this way, by using the results of Section 2 
coinbined with (3.7) and (3.8) for u C W1,P we can derive almost optimal error 
estimates for finite element approximations when u C WS,P) 1 < s < 2, and p > 2 
from Banach space interpolation theory. Indeed, if (1.4) holds we obtain from (2.7), 
(3.7) and (3.8) that for p > 2 

IIU - UhJJ1,2 < ChIJ UI2,p 

with C depending on p as in (2.7) and 

ilt -Uh |1 1, 2 < CII ||l 1,2, 

and, therefore, by interpolation we obtain 

IIU - UhJJ1,2 < ChS a uJ1+s,p, 

which is optimal in order and almost optimal in regularity since p > 2 (and we 
could use extrapolation as in Section 2 to obtain an estimate analogous to that in 
Theorem 2.2 for the finite element aproximation in fractional order Sobolev norms). 

The extension of the results obtained in Section 3 for the case of tetrahedra 
would be interesting. It is not straightforward and is the object of our current 
research. Results for degenerate tetrahedra and singular functions would be of 
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interest since, for problems with singular solutions, local refinement of the meshes 
is needed and, as far as the author knows, the known procedures do not avoid the 
use of narrow elements. This is different than in the 2-d case where it is known 
that the refinement can be done without using small angles. 

REFERENCES 

[1] I. Babuska and A.K. Aziz, On the angle condition in the finite element method, SIAM J. 
Numer. Anal. 13 (1976), 214-226. MR 56:13700 

[2] R. E. Barnhill and J.A. Gregory, Interpolation remainder theory from Taylor expansions on 
triangles, Numer. Math. 25 (1976), 401-408. MR 56:7253 

[3] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts 
in Applied Mathematics, vol.15, Springer-Verlag, 1994. MR 95f:65001 

[4] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, 1978. MR 
58:25001 

[5] P. Clement, Approximation by finite element functions using local regularization, RAIRO 
Anal. Numer. 9 (1975), 77-84. MR 53:4569 

[6] L.T. Dechevski and E. Quak, On the Bramble-Hilbert lemma, Numer. Funct. Anal. and 
Optimiz. 11 (1990), 485-495. MR 91k:46027 

[7] T. Dupont and R. Scott, Constructive polynomial approximation in Sobolev spaces, Recent 
Advances in Numerical Analysis (C.de Boor and G. Golub, eds.), Academic Press, 1980. MR 
80j:41055 

[8] - , Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), 
441-463. MR 81h:65014 

[9] R.G. Duran, On polynomial approximation in Sobolev spaces, SIAM J. Numer. Anal. 20 
(1983), 985-988. MR 85e:42010 

[10] J.A. Gregory, Error bounds for linear interpolation on triangles, The Mathematics of Finite 
Elements and Applications II, Academic Press, 1976, pp. 163-170. MR 56:16995 

[11] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, 1985. MR 86m:35044 
[12] S.M. Hudson, Polynomial approximation in Sobolev spaces, Indiana University Math. J. 39 

(1990), 199-228. MR 91h:41007 
[13] P. Jamet, Estimations d'erreur pour des 6le'ments finis droits presque de'gen6res, RAIRO 

Anal. Numer 10 (1976), 46-61. MR 56:13521 
[14] B. Jawerth and M. Milman, Extrapolation theory with applications, Memoirs Amer. Math. 

Soc. 440 (1991). MR 91i:46092 
[15] M. Krfzek, On semiregular families of triangulations and linear interpolation, Applications 

of Math. 36 (1991), 223-232. MR 92e:65010 
[16] , On the maximum angle condition for linear tetrahedral elements, SIAM J. Numer. 

Anal. 29 (1992), 513-520. MR 92k:65165 
[17] Ladyzhenskaya, Solonnikov and Uraltceva, Linear and Quasilinear Parabolic Differential 

Equations, Transl. of Math. Mon., vol. 23, AMS, 1968. 
[18] M. Milman, Extrapolation and Optimal Decompositions, Lecture Notes in Mathematics, vol. 

1580, Springer-Verlag, Berlin, 1994. MR 96a:46133 
[19] , Personal communication. 
[20] M.H. Schultz, Spline Analysis, Prentice Hall, 1973. MR 50:15270 
[21] L.R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying 

boundary conditions, Math. Comp. 54 (1990), 483-493. MR 90j:65021 
[22] N. Al Shenk, Uniform error estimates for certain narrow Lagrange finite elements, Math. 

Comp. 63 (1994), 105-119. MR 94i:65119 
[23] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univer- 

sity Press, 1970. MR 44:7280 
[24] A. Zenfsek and M. Vanmaele, The interpolation theorem for narrow quadrilateral isopara- 

metric finite elements, Numer. Math. 72 (1995), 123-141. MR 97i:65157 

DEPARTAMENTO DE MATEMA&TICA, FACULTAD DE CIENCIAS EXACTAS, UNIVERSIDAD DE BUENOS 

AIRES, (1428) BUENOS AIRES, ARGENTINA 


